Smith Colloquium

August 29, 2019




Hamidou Tembine, NYU


Title: Mean-Field-Type Games

Abstract: The term "mean-field" has been referred to a physics concept that attempts to describe the effect of an infinite number of particles on the motion of a single particle. Researchers began to apply the concept to social sciences in the early 1960s to study how an infinite number of factors affect individual decisions. However, the key ingredient in a game-theoretic context is the influence of the distribution of states and or control actions into the preferences and payoffs of the decision-makers. There is no need to have large population of decision-makers. A mean-field-type game is a game in which the payoffs and/or the state dynamics coefficient functions involve not only the state and actions profiles but also the distributions of state-action process (or its marginal distributions or correlations). In this talk, we overview some of the key ingredients of mean-field-type game theory.