Vizing’s Conjecture and Techniques from Computer Algebra

Susan Margulies
Computational and Applied Math, Rice University

joint work in progress with I.V. Hicks

April 17, 2010

\(^1\)funded by VIGRE and NSF-CMMI-0926618 and NSF-DMS-0729251
Definition of Dominating Set Problem

Dominating Set: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D| = k$, such that every vertex in the graph is in, or adjacent to, a vertex in D?
Definition of Dominating Set Problem

- **Dominating Set**: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D| = k$, such that every vertex in the graph is in, or adjacent to, a vertex in D?

- **Definition**: The *domination number* of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.

Susan Margulies, Rice University
Definition of Dominating Set Problem

- **Dominating Set**: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D| = k$, such that every vertex in the graph is in, or adjacent to, a vertex in D?

- **Definition**: The *domination number* of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.

- **Turán Graph** $T(5, 3)$:
Definition of Dominating Set Problem

- **Dominating Set**: Given a graph G and an integer k, does there exist a subset of vertices D, with $|D| = k$, such that every vertex in the graph is in, or adjacent to, a vertex in D?

- **Definition**: The *domination number* of a graph G is the size of a minimum dominating set, and is denoted by $\gamma(G)$.

- **Turán Graph** $T(5, 3)$: $\gamma(T(5, 3)) = 1$.

![Graph](image)
Cartesian Product Graph, $G \square H$

- **Cartesian Product**: Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set $V(G) \times V(H)$.
Cartesian Product Graph, $G \square H$

- **Cartesian Product:** Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$V(G) \times V(H)$$

Given vertices $iu, jv \in V(G \square H)$, there is an edge between iu and jv if $i = j$ and $(u, v) \in E[H]$, or $u = v$ and $(i, j) \in E[G]$.
Cartesian Product Graph, $G \Box H$

- **Cartesian Product:** Given graphs G and H, the cartesian product graph, denoted $G \Box H$, has vertex set $V(G) \times V(H)$

 Given vertices $iu, jv \in V(G \Box H)$, there is an edge between iu and jv if $i = j$ and $(u, v) \in E[H]$, or $u = v$ and $(i, j) \in E[G]$.

- **Example:** Consider a triangle and an edge:

```
  G
  2 3

  H
  a
  b
```
Cartesian Product Graph, $G \square H$

- **Cartesian Product:** Given graphs G and H, the cartesian product graph, denoted $G \square H$, has vertex set

$$V(G) \times V(H)$$

Given vertices $iu, jv \in V(G \square H)$, there is an edge between iu and jv if $i = j$ and $(u, v) \in E[H]$, or $u = v$ and $(i, j) \in E[G]$.

- **Example:** Consider a triangle and an edge:
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \quad \gamma(H) = 1 \quad \text{and} \quad \gamma(G \square H) = 2 \]

\[\gamma(G) \leq \gamma(H) \neq \gamma(G \square H) \]
Example: Consider a triangle and an edge:
Example: Consider a triangle and an edge:

Example: Consider a square and an edge:
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \Box H) = 2. \]

\[\gamma(G) \leq \gamma(H) < \gamma(G \Box H). \]
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \]
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \]

Example: Consider a square and an edge:

\[\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \]
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \Box H) = 2 \]

Example: Consider a square and an edge:

\[\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \Box H) = 2 \]
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \]

Example: Consider a square and an edge:

\[\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \]
\textbf{Example:} Consider a triangle and an edge:

\[
\gamma(G) = 1, \quad \gamma(H) = 1 \quad \text{and} \quad \gamma(G \Box H) = 2.
\]

\textbf{Example:} Consider a square and an edge:

\[
\gamma(G) = 2, \quad \gamma(H) = 1 \quad \text{and} \quad \gamma(G \Box H) = 2.
\]
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \gamma(G)\gamma(H) < \gamma(G \square H). \]

Example: Consider a square and an edge:

\[\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \]
Example: Consider a triangle and an edge:

\[\gamma(G) = 1, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \gamma(G)\gamma(H) < \gamma(G \square H). \]

Example: Consider a square and an edge:

\[\gamma(G) = 2, \gamma(H) = 1 \text{ and } \gamma(G \square H) = 2. \gamma(G)\gamma(H) = \gamma(G \square H). \]
Vizing's Conjecture (1963)

Given graphs G and H,

$$\gamma(G)\gamma(H) \leq \gamma(G \square H).$$
Brief History of Progress

- Vizing proposes his conjecture in 1963.
Vizing proposes his conjecture in 1963.

In 1979, Barcalkin and German prove that Vizing’s conjecture holds for a large class of graphs (“A-class” graphs).
Brief History of Progress

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing’s conjecture holds for a large class of graphs (“A-class” graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing’s conjecture holds for graphs that satisfy a special “coloring property”.
- In 1991, El-Zahar and Pareek show that Vizing’s conjecture holds for cycles.
- In 2000, Clark and Suen show that $\gamma(G) \gamma(H) \leq 2 \gamma(G_2 H)$.
- In 2003, Sun proves that Vizing’s conjecture holds if $\gamma(G) \leq 3$.
Vizing proposes his conjecture in 1963.

In 1979, Barcalkin and German prove that Vizing’s conjecture holds for a large class of graphs (“A-class” graphs).

In 1990, Faudree, Schelp and Shreve prove that Vizing’s conjecture holds for graphs that satisfy a special “coloring property”.

In 1991, El-Zahar and Pareek show that Vizing’s conjecture holds for cycles.
Vizing proposes his conjecture in 1963.

In 1979, Barcalkin and German prove that Vizing’s conjecture holds for a large class of graphs (“A-class” graphs).

In 1990, Faudree, Schelp and Shreve prove that Vizing’s conjecture holds for graphs that satisfy a special “coloring property”.

In 1991, El-Zahar and Pareek show that Vizing’s conjecture holds for cycles.

In 2000, Clark and Suen show that $\gamma(G)\gamma(H) \leq 2\gamma(G \square H)$.
Brief History of Progress

- Vizing proposes his conjecture in 1963.
- In 1979, Barcalkin and German prove that Vizing’s conjecture holds for a large class of graphs (“A-class” graphs).
- In 1990, Faudree, Schelp and Shreve prove that Vizing’s conjecture holds for graphs that satisfy a special “coloring property”.
- In 1991, El-Zahar and Pareek show that Vizing’s conjecture holds for cycles.
- In 2000, Clark and Suen show that $\gamma(G)\gamma(H) \leq 2\gamma(G\square H)$.
- In 2003, Sun proves that Vizing’s conjecture holds if $\gamma(G) \leq 3$.
An arbitrary graph G in n vertices and a dominating set of size k

Lemma

The following zero-dimensional system of polynomial equations has a solution if and only if there exists a graph G in n vertices that has a dominating set of size k.

\[
x_i^2 - x_i = 0, \quad \text{for } i = 1, \ldots, n,
\]
\[
e_{ij}^2 - e_{ij} = 0, \quad \text{for } i, j = 1, \ldots, n \text{ with } i < j,
\]
\[
(1 - x_i) \prod_{\substack{j=1 \atop j \neq i}}^{n} (1 - e_{ij} x_j) = 0, \quad \text{for } i = 1, \ldots, n,
\]
\[
-k + \sum_{i=1}^{n} x_i = 0.
\]
An arbitrary graph G in n vertices and an arbitrary dominating set of size k

Let S^k_n denote the set of k-subsets of $\{1, 2, \ldots, n\}$.
An arbitrary graph G in n vertices and an arbitrary dominating set of size k

Let S^k_n denote the set of k-subsets of $\{1, 2, \ldots, n\}$.

Lemma

The following zero-dimensional system has a solution if and only if there exists a graph G in n vertices that has a dominating set of size k.

\[
\prod_{S \in S^k_n} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right) = 0.
\]

\[
e^{2}_{ij} - e_{ij} = 0, \quad \text{for } 1 \leq i < j \leq n,
\]
Let \mathcal{P}_G be the set of polynomials representing a graph G in n vertices with a dominating set of size k:

$$e_{ij}^2 - e_{ij} = 0, \quad \text{for } 1 \leq i < j \leq n,$$

$$\prod_{S \in S^k_n} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right) = 0.$$
Notation Definitions

Let \mathcal{P}_G be the set of polynomials representing a graph G in n vertices with a dominating set of size k:

\[
e_{ij}^2 - e_{ij} = 0 \text{, for } 1 \leq i < j \leq n,
\]

\[
\prod_{S \in S^k_n} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right) = 0.
\]

Let \mathcal{P}_H be the set of polynomials representing a graph H in n' vertices with a dominating set of size l:

\[
e_{ij}'^2 - e_{ij}' = 0 \text{, for } 1 \leq i < j \leq n',
\]

\[
\prod_{S \in S^l_{n'}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}') \right) \right) = 0.
\]
Let $\mathcal{P}_{G \Box H}$ be the set of polynomials representing the cartesian product graph $G \Box H$ with a dominating set of size r:

For $i = 1, \ldots, n$ and $j = 1, \ldots, n'$,

$$z_{ij}^2 - z_{ij} = 0,$$

$$(1 - z_{ij}) \prod_{k=1}^{n} (1 - e_{ik}z_{kj}) \prod_{k=1}^{n'} (1 - e'_{jk}z_{ik}) = 0,$$

and

$$-r + \sum_{i=1}^{n} \sum_{j=1}^{n'} z_{ij} = 0.$$
The ideal I_k^l and variety V_k^l

Lemma

The system of polynomial equations P_G, P_H and $P_{G \Box H}$ has a solution if and only if there exist graphs G, H in n, n' vertices respectively with dominating sets of size k, l respectively such that their cartesian product graph $G \Box H$ has a dominating set of size r.

Let $I_k^l := I(V_k^l)$.

Note that $I(V_k^l) = I_k^l$ since the ideal I_k^l is radical.

Susan Margulies, Rice University
The ideal I_k^l and variety V_k^l

Lemma

The system of polynomial equations \mathcal{P}_G, \mathcal{P}_H and $\mathcal{P}_{G \Box H}$ has a solution if and only if there exist graphs G, H in n, n' vertices respectively with dominating sets of size k, l respectively such that their cartesian product graph $G \Box H$ has a dominating set of size r.

Let $I_k^l := I(n, k, n', l, r = kl - 1) := \langle \mathcal{P}_G, \mathcal{P}_H, \mathcal{P}_{G \Box H} \rangle$.
The ideal I^l_k and variety V^l_k

Lemma

The system of polynomial equations $\mathcal{P}_G, \mathcal{P}_H$ and $\mathcal{P}_{G \square H}$ has a solution if and only if there exist graphs G, H in n, n' vertices respectively with dominating sets of size k, l respectively such that their cartesian product graph $G \square H$ has a dominating set of size r.

Let $I^l_k := I(n, k, n', l, r = kl - 1) := \langle \mathcal{P}_G, \mathcal{P}_H, \mathcal{P}_{G \square H} \rangle$.
Let $V^l_k := V(I^l_k)$.
The system of polynomial equations P_G, P_H and $P_{G \Box H}$ has a solution if and only if there exist graphs G, H in n, n' vertices respectively with dominating sets of size k, l respectively such that their cartesian product graph $G \Box H$ has a dominating set of size r.

Let $I^l_k := I(n, k, n', l, r = kl - 1) := \langle P_G, P_H, P_{G \Box H} \rangle$.
Let $V^l_k := V(I^l_k)$.
Note that $I(V^l_k) = I^l_k$ since the ideal I^l_k is radical.
Unions and Vizing’s Conjecture

Theorem

Vizing’s conjecture is true $\iff V_{k-1}^l \cup V_{k-1}^{l-1} = V_k^l$.
Theorem

Vizing's conjecture is true \iff V_{k-1}^l \cup V_{k-1}^{l-1} = V_k^l.

Proof.

Every point in the variety corresponds to a \(G, H \) pair.
Unions and Vizing’s Conjecture

Theorem

Vizing’s conjecture is true $\iff V_{k-1}^l \cup V_{k-1}^{l-1} = V_k^l$.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^l \cup V_{k-1}^{l-1} \subseteq V_k^l$.

Susan Margulies, Rice University
Theorem

Vizing's conjecture is true \iff V_{k-1}^l \cup V_{k-1}^{l-1} = V_k^l.

Proof.

Every point in the variety corresponds to a G, H pair. Since dominating sets can always be extended, $V_{k-1}^l \cup V_{k-1}^{l-1} \subseteq V_k^l$. If $V_k^l \subseteq V_{k-1}^l \cup V_{k-1}^{l-1}$, then for every G, H pair, either k or l is strictly less than $\gamma(G), \gamma(H)$ respectively.
Theorem

Vizing’s conjecture is true $\iff V_{k-1}^l \cup V_{k}^{l-1} = V_{k}^l$.

Proof.

Every point in the variety corresponds to a G,H pair. Since dominating sets can always be extended, $V_{k-1}^l \cup V_{k}^{l-1} \subseteq V_{k}^l$.

If $V_{k}^l \subseteq V_{k-1}^l \cup V_{k}^{l-1}$, then for every G,H pair, either k or l is strictly less than $\gamma(G), \gamma(H)$ respectively.

Thus, Vizing’s conjecture is true $\iff V_{k-1}^l \cup V_{k}^{l-1} = V_{k}^l$.

Intersections and Vizing’s Conjecture

Corollary

Vizing’s conjecture is true $\iff I_{k-1}^l \cap I_{k-1}^{l-1} = I_k^l$.
Definition: Given \(I = \langle f_1, \ldots, f_s \rangle \) and \(J = \langle g_1, \ldots, g_t \rangle \), then the **product ideal** \(I \cdot J := \langle f_i g_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle \).
Definition: Given $I = \langle f_1, \ldots, f_s \rangle$ and $J = \langle g_1, \ldots, g_t \rangle$, then the *product ideal* $I \cdot J := \langle f_i g_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle$.

Fact: Given radical ideals $I, J \in \mathbb{K}[x_1, \ldots, x_n]$, $\sqrt{I \cdot J} = I \cap J$.
Definition: Given \(I = \langle f_1, \ldots, f_s \rangle \) and \(J = \langle g_1, \ldots, g_t \rangle \), then the *product ideal* \(I \cdot J := \langle f_ig_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle \).

Fact: Given radical ideals \(I, J \in \mathbb{K}[x_1, \ldots, x_n] \), \(\sqrt{I \cdot J} = I \cap J \).

Lemma

Let \(I, J \) be ideals in \(\mathbb{K}[x_1, \ldots, x_n] \) such that \(I = \langle f_1, \ldots, f_s \rangle \) and \(J = \langle g_1, \ldots, g_t \rangle \). Furthermore, let \(\{f_1, \ldots, f_n\} = \{g_1, \ldots, g_n\} \) be square-free univariate polynomials such that \(f_i = g_i \) is univariate in \(x_i \).
Definition: Given \(I = \langle f_1, \ldots, f_s \rangle \) and \(J = \langle g_1, \ldots, g_t \rangle \), then the *product ideal* \(I \cdot J := \langle f_i g_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle \).

Fact: Given radical ideals \(I, J \in \mathbb{K}[x_1, \ldots, x_n] \), \(\sqrt{I \cdot J} = I \cap J \).

Lemma

Let \(I, J \) be ideals in \(\mathbb{K}[x_1, \ldots, x_n] \) such that \(I = \langle f_1, \ldots, f_s \rangle \) and \(J = \langle g_1, \ldots, g_t \rangle \). Furthermore, let \(\{ f_1, \ldots, f_n \} = \{ g_1, \ldots, g_n \} \) be square-free univariate polynomials such that \(f_i = g_i \) is univariate in \(x_i \). Then, \(\sqrt{I \cdot J} = \langle f_i g_j : 1 \leq i \leq s, 1 \leq j \leq t \rangle + \langle f_i : 1 \leq i \leq n \rangle \).
Corollary

Vizing's conjecture is true $\iff I_{l-1}^I \cdot I_{k-1}^I + \langle e_i^2 - e_i, e_j'^2 - e_j', z_{ij}'^2 - z_{ij} \rangle = I_k^I$.
Corollary

Vizing’s conjecture is true ⇐⇒

\[l_{k-1}^l \cdot l_{k}^{l-1} + \langle e_i^2 - e_i, e_j'^2 - e_j', z_{ij}^2 - z_{ij} \rangle = l_k^l \]

Let

\[P_{G_{k-1}} := \prod_{S \in S_{n}^{k-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right), \]

\[P_{H_{l-1}} := \prod_{S \in S_{n'}^{l-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}') \right) \right). \]
Vizing’s Conjecture and Linear Algebra

Corollary

Vizing’s conjecture is true \iff
\[I_{k-1}^l \cdot I_{k}^{l-1} + \langle e_i^2 - e_i, e'_j^2 - e'_j, z_{ij}^2 - z_{ij} \rangle = I_k^l. \]

Let

\[P_{G_{k-1}} := \prod_{S \in S_n^{k-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right), \]

\[P_{H_{l-1}} := \prod_{S \in S_n'^{l-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e'_{ij}) \right) \right). \]

Since \(V_{k-1}^l \cup V_{k}^{l-1} \subseteq V_k^l \), this implies \(I_k^l \subseteq I_{k-1}^l \cap I_{k}^{l-1} \).
Corollary

Vizing’s conjecture is true \iff

\begin{align*}
l^l_{k-1} \cdot l^{l-1}_k + \langle e_i^2 - e_i, e'_j^2 - e'_j, z_{ij}^2 - z_{ij} \rangle &= l^l_k.
\end{align*}

Let

\begin{align*}
P_{G_{k-1}} &:= \prod_{S \in S_{n}^{k-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right), \\
P_{H_{l-1}} &:= \prod_{S \in S_{n'}^{l-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e'_{ij}) \right) \right).
\end{align*}

Since \(V^l_{k-1} \cup V^{l-1}_k \subseteq V^l_k \), this implies \(l^l_k \subseteq l^l_{k-1} \cap l^{l-1}_k \).

Proving \(l^l_k \subseteq l^l_{k-1} \cap l^{l-1}_k \) is equivalent to proving...
Corollary

Vizing’s conjecture is true \iff

$$I_{k-1}^l \cdot I_{k-1}^{l-1} + \langle e_i^2 - e_i, e_j'^2 - e_j', z_{ij}^2 - z_{ij} \rangle = I_k^l.$$

Let

$$P_{G_{k-1}} := \prod_{S \in S_n^{k-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_{ij}) \right) \right),$$

$$P_{H_{l-1}} := \prod_{S \in S_n^{l-1}} \left(\sum_{i \notin S} \left(\prod_{j \in S} (1 - e_j' \cdot e_i') \right) \right).$$

Since $V_{k-1}^l \cup V_{k-1}^{l-1} \subseteq V_k^l$, this implies $I_k^l \subseteq I_{k-1}^l \cap I_{k-1}^{l-1}$.

Proving $I_k^l \subseteq I_{k-1}^l \cap I_{k-1}^{l-1}$ is equivalent to proving

$$P_{G_{k-1}} \cdot P_{H_{l-1}} \in I_k^l.$$
Let

\[P'_{G \Box H} := P_{G \Box H} \setminus \left\{ -(kl - l) + \sum_{i=1}^{n} \sum_{j=1}^{n'} z_{ij} \right\} \]
Let

\[\mathcal{P}'_{G \square H} := \mathcal{P}_{G \square H} \setminus \left\{ - (kl - l) + \sum_{i=1}^{n} \sum_{j=1}^{n'} z_{ij} \right\} \]

Conjecture via Experimental Observation

The following set of polynomials (described by cases 1 through 6) is a graph-theoretic interpretation of the unique, reduced Gröbner basis of \(\mathcal{P}'_{G \square H} \).
Vizing's Conjecture and Gröbner Bases: Degree

Every polynomial in the Gröbner basis has the following form:
\[(x_i^1 - 1)(x_i^d - 1) \cdots (x_i^D - 1),\]
where
\[D = (n - 1) + (n' - 1) + 1 = n + n' - 1.\]

In the \(P_3 \square P_2\) example, the degree equals five.
Every polynomial in the Gröbner basis has the following form:

$$(x_{i_1} - 1)(x_{i_d} - 1) \cdots (x_{i_D} - 1),$$

where $D := (n - 1) + (n' - 1) + 1 := n + n' - 1$.
Every polynomial in the Gröbner basis has the following form:

\[(x_{i_1} - 1)(x_{i_d} - 1) \cdots (x_{i_D} - 1),\]

where \(D := (n - 1) + (n' - 1) + 1 := n + n' - 1.\)

In the \(P_{\text{tri} \square \text{tri}}\) example, the degree equals five.
Notation: Let \(G \) represent the set of \(G \)-levels in \(G \square H \). Given a level \(l \in G \), let

\[
p(l) := \prod_{i \in V(l)} (x_i - 1) .
\]
Notation: Let G represent the set of G-levels in $G\Box H$. Given a level $l \in G$, let

$$p(l) := \prod_{i \in V(l)} (x_i - 1).$$

Example: Consider the a-level in $\text{tri} \Box \text{tri}$. Then,

$$p(a) := (z_{1a} - 1)(z_{2a} - 1)(z_{3a} - 1).$$
Case 1: There are $|G| \cdot |H|$ polynomials of the form:

$$p(g) \cdot \prod_{l \in G : l \neq g} (x[l_i] - 1),$$

for each $i \in V(G)$ and each level $g \in \mathcal{G}$.
Case 1: There are \(|G| \cdot |H|\) polynomials of the form:

\[p(g) \cdot \prod_{\substack{l \in G: \ l \neq g \wedge \ l \in l_i}} (x[l_i] - 1), \quad \text{for each } i \in V(G) \text{ and each level } g \in G. \]

Example: For \(g = a\)-level and \(i = 1\), then

\[(z_{1a} - 1)(z_{2a} - 1)(z_{3a} - 1)(z_{1b} - 1)(z_{1c} - 1) \]
Notation: Let $e \in E[H]$. In $G \Box H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \Box H$.
Notation: Let $e \in E[H]$. In $G \square H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \square H$. In particular, let $h(e)$ define the G-level that where the edge originates (according to the lexicographic order), and let $t(e)$ denote the G-level where the edge terminates.
Vizing’s Conjecture and Gröbner Bases: Case 2

Notation: Let $e \in E[H]$. In $G \Box H$, the lexicographic order defined for the Gröbner basis also defines a direction on the edges in $G \Box H$. In particular, let $h(e)$ define the G-level that where the edge originates (according to the lexicographic order), and let $t(e)$ denote the G-level where the edge terminates.

Example: Consider the edge e'_{ac} and the c-level in tri \Box tri. Then,

$$p(h(e)) := (z_{1a} - 1)(z_{2a} - 1)(z_{3a} - 1),$$

$$p(t(e)) := (z_{1c} - 1)(z_{2c} - 1)(z_{3c} - 1).$$
Case 2: There are $2||H|| \cdot |G| + 2||G|| \cdot |H|$ polynomials of the following form:

$$(x_e - 1)p(h(e)) \prod_{g \in G: g \not\in G[t(e)] \text{ and } g \not\in G[h(e)]} (g_i - 1), \quad \text{for each } e \in E(H) \text{ and each } i \in V(G)$$

$$(x_e - 1)p(t(e)) \prod_{g \in G: g \not\in G[t(e)] \text{ and } g \not\in G[h(e)]} (g_i - 1), \quad \text{for each } e \in E(H) \text{ and each } i \in V(G)$$
Vizing’s Conjecture and Gröbner Bases: Case 2

Case 2: There are $2||H|| \cdot |G| + 2||G|| \cdot |H|$ polynomials of the following form:

$$(x_e - 1)p(h(e)) \prod_{g \in \mathcal{G}: g \not\in \mathcal{G}[t(e)] \text{ and } g \not\in \mathcal{G}[h(e)]} (g_i - 1), \quad \text{for each } e \in E(H) \text{ and each } i \in V(G)$$

$$(x_e - 1)p(t(e)) \prod_{g \in \mathcal{G}: g \not\in \mathcal{G}[t(e)] \text{ and } g \not\in \mathcal{G}[h(e)]} (g_i - 1), \quad \text{for each } e \in E(H) \text{ and each } i \in V(G)$$

Example: For $e = e'_{ac}$ and $i = 1$, then

$$(e'_{ac} - 1)(z_{1a} - 1)(z_{2a} - 1)(z_{3a} - 1)(z_{1b} - 1),$$

$$(e'_{ac} - 1)(z_{1c} - 1)(z_{2c} - 1)(z_{3c} - 1)(z_{1b} - 1).$$
Represented Vizing’s conjecture as a computational problem.
Represented Vizing’s conjecture as a computational problem.

Can we use symmetry to speed up the computations?
Represented Vizing’s conjecture as a computational problem.
 • Can we use symmetry to speed up the computations?
 • Conjectured a graph-theoretic interpretation of the Gröbner basis of $P'_{G \square H}$ (presented only cases 1 and 2).
Represented Vizing’s conjecture as a computational problem.
- Can we use symmetry to speed up the computations?
- Conjectured a graph-theoretic interpretation of the Gröbner basis of $P_{G\Box H}^\prime$ (presented only cases 1 and 2).
- Code it up and check it!
Represented Vizing’s conjecture as a computational problem. Can we use symmetry to speed up the computations?
Conjectured a graph-theoretic interpretation of the Gröbner basis of $\mathcal{P}_{G\Box H}$ (presented only cases 1 and 2).
Code it up and check it!

Thank you for your kind attention!
Questions, comments, thoughts and suggestions are most welcome.