Section 6.4

Arclength

- Arclength of Parametric Curves,
- Arclength of Functions,
- Surface Area of Solids of Revolution.
Integrals represent quantities that are the "total amount" of something. There is a two-step procedure for computing such quantities:

1. Approximate the quantity by a sum of N terms.
2. Pass to the limit as $N \to \infty$.

In this section we will represent arclength and surface area as integrals.
Integrals represent quantities that are the "total amount" of something. There is a two-step procedure for computing such quantities:

1. Approximate the quantity by a sum of \(N \) terms.
2. Pass to the limit as \(N \to \infty \).

In this section we will represent arclength and surface area as integrals.

Smooth Curve: A curve \(c(t) = (x(t), y(t)) \) where \(x'(t) \) and \(y'(t) \) exist, are continuous, and are not simultaneously zero.

Arclength: The arclength of a smooth curve is the length of the curve once it has been straightened.
Calculating Arclength of \(c(t) = (x(t), y(t)) \)

(i) Subdivide \([a, b]\) into \(N\)-subintervals of length \(\Delta t = \frac{b-a}{N}\).

(ii) Each \(t_i = a + i\Delta t\) corresponds to a point \(P_i = (x_i, y_i) = (x(t_i), y(t_i))\).
Calculating Arclength of $c(t) = (x(t), y(t))$

(i) Subdivide $[a, b]$ into N-subintervals of length $\Delta t = \frac{b-a}{N}$.
(ii) Each $t_i = a + i\Delta t$ corresponds to a point $P_i = (x_i, y_i) = (x(t_i), y(t_i))$.

(iii) The arclength is approximated by summing the distances between the P_i’s.

\[
\text{Arclength} \approx \sum_{i=1}^{N} |P_{i-1} P_i|
\]

(iv) Using the Mean Value Theorem, it can be shown that

\[
|P_{i-1} P_i| = \sqrt{x'(t_i)^2 + y'(t_{\ast})^2} \Delta t
\]

(v) Letting $N \to \infty$ we find the arclength of the curve:

\[
\int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]
Calculating Arclength of \(c(t) = (x(t), y(t)) \)

(i) Subdivide \([a, b]\) into \(N\)-subintervals of length \(\Delta t = \frac{b-a}{N} \).

(ii) Each \(t_i = a + i\Delta t \) corresponds to a point \(P_i = (x_i, y_i) = (x(t_i), y(t_i)) \).

(iii) The arclength is approximated by summing the distances between the \(P_i \)'s.

\[
\text{Arclength} \approx \sum_{i=1}^{N} |P_{i-1} P_i|
\]

(iv) Using the Mean Value Theorem, it can be shown that

\[
|P_{i-1} P_i| = \sqrt{(x'(t_i^\circ))^2 + (y'(t_i^*)^2)} \Delta t
\]
Calculating Arclength of \(c(t) = (x(t), y(t)) \)

(i) Subdivide \([a, b]\) into \(N\)-subintervals of length \(\Delta t = \frac{b-a}{N}\).

(ii) Each \(t_i = a + i\Delta t\) corresponds to a point \(P_i = (x_i, y_i) = (x(t_i), y(t_i))\).

(iii) The arclength is approximated by summing the distances between the \(P_i\)'s.

\[
\text{Arclength} \approx \sum_{i=1}^{N} |P_{i-1}P_i|
\]

(iv) Using the Mean Value Theorem, it can be shown that

\[
|P_{i-1}P_i| = \sqrt{x'(t_i^o)^2 + y'(t_i^*)^2} \Delta t
\]

(v) Letting \(N \to \infty\) we find the arclength of the curve:

\[
\int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]
Let \(c(t) = (x(t), y(t)) \) be a smooth curve. Then the arclength \(s \) of \(c(t) \) on the interval \(a \leq t \leq b \) is

\[
s = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]
Arclength

Let \(c(t) = (x(t), y(t)) \) be a smooth curve. Then the arclength \(s \) of \(c(t) \) on the interval \(a \leq t \leq b \) is

\[
s = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]

Example (1): Calculate the arclength of the circle of radius \(R \).
Let $c(t) = (x(t), y(t))$ be a smooth curve. Then the arclength s of $c(t)$ on the interval $a \leq t \leq b$ is

$$ s = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dt $$

Example (1): Calculate the arclength of the circle of radius R.

Solution: We parameterize the circle by letting $x(t) = R \cos(t)$ and $y(t) = R \sin(t)$ on the interval $[0, 2\pi]$; note that this is one amongst an infinite number of parametrizations.
Let \(c(t) = (x(t), y(t)) \) be a smooth curve. Then the arclength \(s \) of \(c(t) \) on the interval \(a \leq t \leq b \) is

\[
s = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]

Example (1): Calculate the arclength of the circle of radius \(R \).

Solution: We parameterize the circle by letting \(x(t) = R \cos(t) \) and \(y(t) = R \sin(t) \) on the interval \([0, 2\pi]\); note that this is one amongst an infinite number of parametrizations.

Circumference

\[
\text{Circumference} = \int_0^{2\pi} \sqrt{(-R \sin(t))^2 + (R \cos(t))^2} \, dt
\]
Let \(c(t) = (x(t), y(t)) \) be a smooth curve. Then the arclength \(s \) of \(c(t) \) on the interval \(a \leq t \leq b \) is

\[
s = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]

Example (1): Calculate the arclength of the circle of radius \(R \).

Solution: We parameterize the circle by letting \(x(t) = R \cos(t) \) and \(y(t) = R \sin(t) \) on the interval \([0, 2\pi]\); note that this is one amongst an infinite number of parametrizations.

Circumference

\[
\int_0^{2\pi} \sqrt{(-R \sin(t))^2 + (R \cos(t))^2} \, dt = \int_0^{2\pi} R \, dt = 2\pi R
\]
Example (2): Calculate the arclength of the curve $c(t) = (t^3 + 1, t^2 - 3)$ on the interval $[0, 1]$.

Solution: We have a parametrization of the smooth curve, though to calculate the integral we will need trigonometric substitution.

$$
\int_{0}^{1} \sqrt{9t^4 + 4t^2} \, dt = \frac{8}{9} \int_{\arctan(1.5)}^{0} \tan(\theta) \sec^3(\theta) \, d\theta = \frac{8}{9} \int \sqrt{1 + u^2} \, du = \frac{1}{27} \left(13\sqrt{13} - 8\right)
$$

Arclength of a Function

A function $y = f(x)$ can be easily parametrized by the equations $x = t$ and $y = f(t)$. Therefore, a smooth function, where $f'(x)$ exists and is continuous, on the interval $[a, b]$ has arclength

$$
\int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx
$$
Example (2): Calculate the arclength of the curve $c(t) = (t^3 + 1, t^2 - 3)$ on the interval $[0, 1]$.

Solution: We have a parametrization of the smooth curve, though to calculate the integral we will need trigonometric substitution.

$$\int_{0}^{1} \sqrt{9t^4 + 4t^2} \, dt$$
Example (2): Calculate the arclength of the curve \(c(t) = (t^3 + 1, t^2 - 3) \) on the interval \([0, 1]\).

Solution: We have a parametrization of the smooth curve, though to calculate the integral we will need trigonometric substitution.

\[
\int_{0}^{1} \sqrt{9t^4 + 4t^2} \, dt = \frac{8}{9} \int_{0}^{\arctan(1.5)} \tan(\theta) \sec^3(\theta) \, d\theta
\]
Example (2): Calculate the arclength of the curve \(c(t) = (t^3 + 1, t^2 - 3) \) on the interval \([0, 1]\).

Solution: We have a parametrization of the smooth curve, though to calculate the integral we will need trigonometric substitution.

\[
\int_{0}^{1} \sqrt{9t^4 + 4t^2} \, dt = \frac{8}{9} \int_{0}^{\arctan(1.5)} \tan(\theta) \sec^3(\theta) \, d\theta
\]

\[
= \frac{8}{9} \int_{0}^{\frac{\sqrt{13}}{2}} u^2 \, du
\]
Example (2): Calculate the arclength of the curve \(c(t) = (t^3 + 1, t^2 - 3) \) on the interval \([0, 1]\).

Solution: We have a parametrization of the smooth curve, though to calculate the integral we will need trigonometric substitution.

\[
\int_0^1 \sqrt{9t^4 + 4t^2} \, dt = \frac{8}{9} \int_0^{\arctan(1.5)} \tan(\theta) \sec^3(\theta) \, d\theta
\]

\[
= \frac{8}{9} \int_1^{\frac{\sqrt{13}}{2}} u^2 \, du = \frac{1}{27} \left(13\sqrt{13} - 8 \right)
\]
Example (2): Calculate the arclength of the curve \(c(t) = (t^3 + 1, t^2 - 3) \) on the interval \([0, 1]\).

Solution: We have a parametrization of the smooth curve, though to calculate the integral we will need trigonometric substitution.

\[
\int_0^1 \sqrt{9t^4 + 4t^2} \, dt = \frac{8}{9} \int_0^{\arctan(1.5)} \tan(\theta) \sec^3(\theta) \, d\theta
\]

\[
= \frac{8}{9} \int_1^{\sqrt{13}/2} u^2 \, du = \frac{1}{27} \left(13\sqrt{13} - 8\right)
\]

Arclength of a Function

A function \(y = f(x) \) can be easily parametrized by the equations \(x = t \) and \(y = f(t) \). Therefore, a smooth function, where \(f'(x) \) exists and is continuous, on the interval \([a, b]\) has arclength

\[
\int_a^b \sqrt{1 + f'(x)^2} \, dx
\]
iClicker Question 1

The length of the graph of \(y = \sin(x^2) \) from \(x = 0 \) to \(x = 2\pi \) is represented by the integral

(A) \(\int_{0}^{2\pi} (1 + \sin(x^2)) \, dx \)

(B) \(\int_{0}^{2\pi} \sqrt{1 + \sin(x^2)} \, dx \)

(C) \(\int_{0}^{2\pi} \sqrt{1 + (2x \sin(x^2))^2} \, dx \)

(D) \(\int_{0}^{2\pi} \sqrt{1 + (2x \cos(x^2))^2} \, dx \)

(E) \(\int_{0}^{2\pi} \sqrt{1 + (2x \sin(x^2) \cos(x^2))^2} \, dx \)
Find arclength of the curve $c(t) = (\cos(t^2), \sin(t^2))$ on the interval $[0, \sqrt{\pi}]$.

(A) 0
(B) $\sqrt{\pi}$
(C) π
(D) π^2
(E) 2π
Speed of a Particle
The speed of a particle moving along a curve \(c(t)\) is related to arclength. The distance traveled by the particle over the time interval \([a, t]\) is given by the arclength integral

\[
s(t) = \int_a^t \sqrt{x'(u)^2 + y'(u)^2} \, du
\]

Warning: The speed calculated above depends upon the parametrization of the curve. For example, the speed of a particle on \(c(t) = (\cos(t), \sin(t))\) is 1 while the speed of a particle on \(d(t) = (\cos(2t), \sin(2t))\) is 2.
Speed of a Particle

The speed of a particle moving along a curve $c(t)$ is related to arclength. The distance traveled by the particle over the time interval $[a, t]$ is given by the arclength integral

$$s(t) = \int_a^t \sqrt{x'(u)^2 + y'(u)^2} \, du$$

Speed is the rate of change of distance traveled with respect to time. Using the Fundamental Theorem of Calculus,

$$\text{Speed} = \frac{ds}{dt} = \frac{d}{dt} \left(\int_a^t \sqrt{x'(u)^2 + y'(u)^2} \, du \right) = \sqrt{x'(t)^2 + y'(t)^2}$$
Speed of a Particle

The speed of a particle moving along a curve $c(t)$ is related to arclength. The distance traveled by the particle over the time interval $[a, t]$ is given by the arclength integral

$$s(t) = \int_a^t \sqrt{x'(u)^2 + y'(u)^2} \, du$$

Speed is the rate of change of distance traveled with respect to time. Using the Fundamental Theorem of Calculus,

$$\text{Speed} = \frac{ds}{dt} = \frac{d}{dt} \left(\int_a^t \sqrt{x'(u)^2 + y'(u)^2} \, du \right) = \sqrt{x'(t)^2 + y'(t)^2}$$

Warning: The speed calculated above depends upon the parametrization of the curve.

For example, the speed of a particle on $c(t) = (\cos(t), \sin(t))$ is 1 while the speed of a particle on $d(t) = (\cos(2t), \sin(2t))$ is 2.
Find the time t where the speed of a particle with trajectory $c(t) = (t^3 - t, t^2 + 1)$ is minimized, where $t \geq 0$.

(A) $t = 0$

(B) $t = \frac{1}{3}$

(C) $t = \sqrt{3}$

(D) $t = 9$

(E) $t = \sqrt{\frac{3}{2}}$
Surface Area of Solids of Revolution

Suppose a continuous function \(y = f(x) \) on the interval \([a, b]\) is rotated about the \(x\)-axis. What is the surface area of the resulting solid?
Suppose a continuous function $y = f(x)$ on the interval $[a, b]$ is rotated about the x-axis. What is the surface area of the resulting solid?

We will approximate the surface area by:

(i) Subdividing the domain into N-subintervals and finding points $P_i = (x_i, f(x_i))$.

![Diagram showing rotation and surface area approximation](image-url)
Suppose a continuous function $y = f(x)$ on the interval $[a, b]$ is rotated about the x-axis. What is the surface area of the resulting solid?

We will approximate the surface area by:

(i) Subdividing the domain into N-subintervals and finding points $P_i = (x_i, f(x_i))$.

(ii) The surface area resulting from each subinterval’s revolution can be approximated by taking a line between P_{i-1} and P_i and rotating it about the x-axis to form the frustum of a cone.
We calculate the surface area of a cone with base radius r and slant height l.

Cutting and unraveling the cone we obtain a sector of a circle, which has surface area

$$\frac{1}{2} l^2 \theta = \frac{1}{2} l^2 \left(\frac{2\pi r}{l} \right) = \pi rl$$
We calculate the surface area of a cone with base radius \(r \) and slant height \(l \).

Cutting and unraveling the cone we obtain a sector of a circle, which has surface area

\[
\frac{1}{2} l^2 \theta = \frac{1}{2} l^2 \left(\frac{2\pi r}{l} \right) = \pi rl
\]

The surface area of the frustum of the cone:

\[
\pi r_2 (l_1 + l) - \pi r_1 l_1
\]

Using similar triangles and letting \(r = \frac{1}{2} (r_1 + r_2) \) we obtain a simpler formula for the surface area,

\[
\text{Surface Area} = 2\pi rl
\]
The surface area of the solid of revolution which results from rotating the function \(y = f(x) \) on the interval \([a, b]\) about a horizontal axis \(y = c \) is

\[
\int_a^b 2\pi \left(\text{radius} \right) d(\text{segment length}) = \int_a^b 2\pi |c - f(x)| \sqrt{1 + f'(x)^2} \, dx
\]

Example (3): Calculate the surface area of a sphere of radius \(R \).

Solution:
The function \(f(x) = \sqrt{R^2 - x^2} \) rotated about the \(x \)-axis results in the sphere.

\[
\int_{-R}^R 2\pi \sqrt{R^2 - x^2} \sqrt{1 + \left(-x \sqrt{R^2 - x^2}\right)^2} \, dx
\]

\[
= \int_{-R}^R 2\pi R \, dx = 4\pi R^2
\]
The surface area of the solid of revolution which results from rotating the function \(y = f(x) \) on the interval \([a, b]\) about a horizontal axis \(y = c \) is

\[
\int_{a}^{b} 2\pi \left(\text{radius} \right) d(\text{segment length}) = \int_{a}^{b} 2\pi |c - f(x)| \sqrt{1 + f'(x)^2} \, dx
\]

Example (3): Calculate the surface area of a sphere of radius \(R \).

\[
\int_{-R}^{R} 2\pi \sqrt{R^2 - x^2} \sqrt{1 + \left(\frac{-x}{\sqrt{R^2 - x^2}}\right)^2} \, dx = \int_{-R}^{R} 2\pi R \, dx = 4\pi R^2
\]
The surface area of the solid of revolution which results from rotating the function \(y = f(x) \) on the interval \([a, b]\) about a horizontal axis \(y = c \) is

\[
\int_a^b 2\pi (\text{radius}) \, d(\text{segment length}) = \int_a^b 2\pi |c - f(x)| \sqrt{1 + f'(x)^2} \, dx
\]

Example (3): Calculate the surface area of a sphere of radius \(R \).

Solution: The function \(f(x) = \sqrt{R^2 - x^2} \) rotated about the \(x \)-axis results in the sphere.
The surface area of the solid of revolution which results from rotating the function \(y = f(x) \) on the interval \([a, b]\) about a horizontal axis \(y = c \) is

\[
\int_a^b 2\pi (\text{radius}) \, d(\text{segment length}) = \int_a^b 2\pi |c - f(x)| \sqrt{1 + f'(x)^2} \, dx
\]

Example (3): Calculate the surface area of a sphere of radius \(R \).

Solution: The function \(f(x) = \sqrt{R^2 - x^2} \) rotated about the \(x \)-axis results in the sphere.

\[
\int_{-R}^R 2\pi \sqrt{R^2 - x^2} \sqrt{1 + \left(\frac{-x}{\sqrt{R^2 - x^2}} \right)^2} \, dx
\]
The surface area of the solid of revolution which results from rotating the function \(y = f(x) \) on the interval \([a, b]\) about a horizontal axis \(y = c \) is

\[
\int_a^b 2\pi \left(\text{radius} \right) d(\text{segment length}) = \int_a^b 2\pi |c - f(x)| \sqrt{1 + f'(x)^2} \, dx
\]

Example (3): Calculate the surface area of a sphere of radius \(R \).

Solution: The function \(f(x) = \sqrt{R^2 - x^2} \) rotated about the \(x \)-axis results in the sphere.

\[
\int_{-R}^R 2\pi \sqrt{R^2 - x^2} \sqrt{1 + \left(\frac{-x}{\sqrt{R^2 - x^2}} \right)^2} \, dx = \int_{-R}^R 2\pi R \, dx = 4\pi R^2
\]