Section 8.5 Problems

1. Suppose that $\sum c_n x^n$ converges when x = -4 and diverges when x = 6. What can be said about the convergence or divergence of the following series?

(A)
$$\sum c_n$$

(C)
$$\sum 8^n c_n$$

(B)
$$\sum (-3)^n c_n$$

(D)
$$\sum (-9)^n c_n$$

2. For the following power series, find the radius and interval of convergence.

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt{n^2 + 3}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^4 + 2}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^n}{n2^n}$$

(E)
$$\sum_{n=0}^{\infty} \frac{(2x+3)^n}{n!}$$

(C)
$$\sum_{n=1}^{\infty} \frac{n! x^n}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}$$

3. Show that the power series (A) - (C) have the same radius of convergence. Then show that (A) diverges at both endpoints, (B) converges at only one endpoint, and (C) converges at both endpoints.

$$(A)\sum_{n=1}^{\infty} \frac{x^n}{5^n}$$

$$(B)\sum_{n=1}^{\infty}\frac{x^n}{n5^n}$$

$$(A) \sum_{n=1}^{\infty} \frac{x^n}{5^n} \qquad (B) \sum_{n=1}^{\infty} \frac{x^n}{n5^n} \qquad (C) \sum_{n=1}^{\infty} \frac{x^n}{n^25^n}$$