Computational and Applied Mathematics (CAM) Seminar
Fall 2019
CAM seminar talks are held on Wednesday from 2:003:00 PM in Snow Hall 306, unless otherwise noted.
KU Numerical Analysis Group Webpage
Please contact Erik Van Vleck for arrangements.
Date  

September 4  Organization meeting 
September 11  
September 18 
Hamid Mofidi (University of Kansas), Reversal potential of ionic channels via cPNP models Abstract: 
September 25  
October 2 
Abstract: Recent years have seen the proliferation of smart networkconnected devices that exist on the ”edge” of large control systems that are capable of distributed calculations. In particular, the power grid has become progressively more complex, especially with the incorporation of distributed energy resources (DER’s). This increase of ”smart” devices results in a new attack surface reinforcing the need to avoid single points of failure that are common in centralized systems. Additionally, these devices also communicate unreliably with the network, meaning that changes in communication should not halt the entire distributed calculation. In order to remove these kinds of vulnerabilities, we need resilient algorithms to implement on decentralized infrastructure networks. This motivates the study of algorithms which can make use of collaborative autonomy. In this talk, we present a parallel asynchronous Jacobi iteration where each process is responsible for updating and distributing several components of the solution vector. 
October 9 
Abstract: We consider the linear dynamics of spectrally stable periodic stationary solutions of the LugiatoLefever equation (LLE). The LLE takes the form of an NLS equation with damping and external forcing, and has been widely studied in nonlinear fiber optics. Our main result establishes the linear asymptotic stability of spectrally stable periodic solutions of the LLE to perturbations which are localized , i.e. integrable on the line. We further show the longtime modulational dynamics are governed by an associated averaged system (known as the Whitham system). Specifically, this work justifies the predictions of Whitham’s theory of modulations for the LLE at the level of linear dynamics. This is joint work with Mariana Haragus (Univ. Bourgogne FrancheComete) and Wesley Perkins (KU). 
October 16 
Mark Hoefer (University of Colorado Boulder), Five Conservative Regularizations of the Hopf Equation Abstract: The Hopf equation, also known as the inviscid Burgers equation, is the simplest nonlinear wave equation and an introductory example for students studying hyperbolic, quasilinear partial differential equations. The initial value problem exhibits finite time singularity formation (gradient catastrophe), which can be regularized in many ways. One common approach that is inspired by physical problems, e.g., gas dynamics, is to add higher order, dissipative smoothing terms and study the zero dissipation limit. Under quite general conditions, this vanishingviscosity technique offers both mathematical and physical justifications for weak (entropy) solutions and the RankineHugoniot conditions for shock waves. A completely different approach is to add higher order, conservative (dispersive) terms and study the small dispersion limit. This talk will present five distinct, physical, conservative regularizations that yield different small dispersion behavior for initial value problems. A rich variety of dispersive shock wave solutions for these models will be analyzed using nonlinear wave (Whitham) modulation theory, numerical simulation, and experiment. All conservative regularizations considered result in solutions that significantly deviate from the vanishingviscosity approach. HOST: Mantzavinos 
October 23 
Bing Pu (University of Kansas, Department of Geography and Atmospheric Science) Seasonal Prediction Potential for Springtime Dustiness in the United States
Abstract: Severe dust storms reduce visibility and cause breathing problems HOST: Van Vleck 
October 30 
2:00 PM Andrew Steyer (Sandia), Timestepping in the E3SM nonhydrostatic atmosphere dynamic core HOST: Van Vleck HOST: Huang 
November 6 
Zoe Zhu (Harvard), Moiré of moiré: modeling mechanical relaxation and electronic states of incommensurate trilayer van der Waals heterostructures Abstract: Incommensurate stacking provides an intriguing avenue for manipulating the physical properties of layered twodimensional materials, but is a challenging problem from a theoretical perspective. Here, we present a multiscale model to obtain the mechanical relaxation pattern and electronic structure of twisted trilayer van der Waals heterostructures with two independent twist angles. This serves as a prototype system of a generally incommensurate system without a supercell description. To study mechanical properties, we adopt configuration space as a natural description of incommensurate layers, which describes the local environment of each atomic position. We minimize the total energy, parameterized using Density Functional Theory calculations, to obtain the relaxation pattern. For the electronic properties, we focus on twisted trilayer graphene. We adopt a k.p effective theory derived from a lowenergy expansion around the Dirac point in monolayer graphene. Our results suggest that the twisted trilayer systems are interesting from theoretical and mathematical points of view, as well as a promising platform to study correlated physics. HOST: Cazeaux 
November 13 
Bob Eisenberg (Rush Medical), Cancelled HOST: Liu 
November 20 
Hongguo Xu (University of Kansas), A corechasing symplectic QR algorithm Abstract: In this talk we will introduce the corechasing version of the
QR algorithm for computing a Schur form. We will show then how to
adopt the idea to develop a corechasing version of structure
preserving QR algorithm for a special type of symplectic matrices.

November 27  Thanksgiving Break 
December 4 
Bob Eisenberg (Rush Medical), TBA HOST: Liu 